
Mechanical pumps have a lot of uses nowadays. They are common in pumping water from wells, aquarium filtering, pond filtering and aeration. When it comes to water pumps, the main use of this device is the exchange of fluids such as water.
From agriculture to the energy industry, pumps are found in a wide range of applications. The main working principle of a water pump basically depends upon the positive displacement principle and kinetic energy which helps to push the water.
Before & after

How we work
The pumps used for the transport of the water are equipped with solar cells. The solar energy absorbed by the cells is then converted into electrical energy via a generator which then feeds an electric motor driving the pump. Most of the traditional pump systems mainly work with a diesel engine or with the local power grid. However, these two modes of operations present disadvantages compared to solar pumps.
In many rural areas, especially in developing and emerging countries, the access to the electricity grid is not always guaranteed. In this case, farmers cannot rely on the traditional irrigation system. Thus, using an independent and alternative energy system can be a solution for the farmer to secure a safe power source and for the public grid to avoid saturation.
The truth is, solar energy might be the easiest way for farmers to produce energy, especially for those living off the electricity grids with poor infrastructure around their homes. Therefore, the use of solar water pumps in agriculture is becoming increasingly popular.
The concept of solar irrigation represents a virtuous circle when the sun shines, it feeds the irrigation system and feeds the crops which are dependant on water in sunny weather. Therefore, a large quantity of energy is being released right at the time when it is needed the most.
Although these systems are still quite expensive and complicated to settle, many R&D projects are working on the democratization of the use of solar power in agriculture, which, in the future (and even now), could play a vital part in the management of the food and energy crisis.
The solar-powered pump then distributes the water through the hoses, directly to the crops. After a successful test on a 3.5-hectare organic cornfield
Diesel pumps are slightly more efficient than AC powered pumps as they allow greater flexibility. However, one of the main constraints is that this system relies on the fuel availability, added to a greater impact on the environment. Diesel-driven pumps are cheaper than solar-powered pumps but the operating costs are quite high and depend heavily on the diesel price.
Project Completion Report
In solar-powered systems, it works the other way round, that is, although this system is relatively expensive, the source of energy is free, therefore, after the amortization period, there are no longer operating costs (only the maintenance costs must be considered). Therefore, solar pumps turn out to be a viable long term investment.
The principle of the drip irrigation method is quite simple. With the use of various valves, hoses and pipes, water drips slowly and at regular intervals to the roots of the plants. Therefore, there is no water waste as water goes directly where it should go, contrary to a sprinkler system in which water evaporates into the air or seeps into soils where no plants grow. Therefore, drip irrigation method enables to grow more crops with less water, turning it into a highly efficient irrigation method.
This is all the more important as farmers have to face three challenges: save water, money and energy. Mobile solar drip irrigation systems shall turn out to be the perfect answer to face these challenges.
Project Gallery




